1172. The Study of the Equilibrium Constant of Complex Formation between Phenol and Pyridine in Solution by a Dielectric Constant Method.

By R. J. BISHOP and L. E. SUTTON.

Few and Smith's dielectric-constant method is used to measure the equilibrium constant complex formation, and dipole moment of the complex, between phenol and pyridine in benzene, carbon tetrachloride, and n-heptane solutions in order to check and extend results obtained by spectroscopic methods. Solvent effects are detected. Excess moments are derived and discussed.

ONE of the fundamental steps in studying complexes in solution is to determine the equilibrium constant of the reaction $xA + yB \rightleftharpoons A_x B_y$ in the presence of a third substance S as solvent. It is necessary to ascertain x/y, which is usually done by some form of Job's method,¹ and then measure the actual concentration of one species, viz., A,B, or $A_x B_y$, the initial concentrations of two of A,B, or $A_x B_y$ being known.

The available methods for measuring concentrations are all of limited usefulness. For the particular case of complex formation through hydrogen bonding² the most commonly used ones for such homogeneous three-component systems are infrared or ultraviolet spectroscopy. The first of these methods cannot normally be used for solutions in hydrocarbons but only in solvents such as carbon tetrachloride, whereas for the second the reverse applies. Crosschecking of methods is therefore limited. If, as actually happens, there is discordance between the results, it is not certain whether this shows genuine solvent effect or is merely due to systematic error.

Few and Smith³ developed a method based on dielectric-constant measurements from a suggestion made by Hammick, Norris, and Sutton,⁴ and Cleverdon, Collins, and Smith⁵ applied it. This method is not as quick and possibly not as accurate as the spectroscopic methods but it can be applied to solutions in any non-polar solvent. In addition, because the electric dipole moment of the complex can be obtained, this method may give information about the stereochemistry of the complex and the electronic perturbations therein.⁶ The method has now been applied to determine the equilibrium between pyridine and phenol in benzene, carbon tetrachloride, and n-heptane solutions in order to extend and clarify the earlier spectroscopic investigations and also in order to establish it further.

- P. Job, Ann. Chim. (France), 1928, 9, 113.
 G. C. Pimental and A. L. McClellan, "The Hydrogen Bond," Freeman, San Francisco, 1960.
 A. V. Few and J. W. Smith, J., 1949, 2781.
 D. Ll. Hammick, A. Norris, and L. E. Sutton, J., 1938, 1755.
 D. Cleverdon, G. B. Collins, and J. W. Smith, J., 1956, 4499.
 J. R. Hulett, J. A. Pegg, and L. E. Sutton, J., 1955, 3901.

EXPERIMENTAL

Equilibrium Constant of Complex Formation, etc.

Purification of Compounds.-Benzene (AnalaR) was fractionally frozen three times, an unfrozen fifth part being discarded each time, leaving about one-half of the original amount. This was kept over phosphorus pentoxide, distilled from fresh phosphorus pentoxide in a stream of dry air on the day of use, and kept under a pressure of dry air. Carbon tetrachloride (AnalaR and n-heptane (I.P. specification) were kept over phosphorus pentoxide, distilled from fresh phosphorus pentoxide on the day of use, and kept under a pressure of dry air. Phenol (AnalaR) was distilled at atmospheric pressure (b. p. 182°); the middle cut was redistilled into breakable glass phials which were sealed until used. Pyridine (AnalaR) was fractionally distilled through a $1 \text{ m.} \times 1 \text{ cm.}$ column packed with glass helices; the middle cut (b. p. 115°) was redistilled and pipetted into phials similar to those used for phenol.

Physical Measurements.—Measurements of dielectric constant (ε) and specific volume (v) were made on dilute solutions of phenol (A) in solvent (S) and in various constant mixtures of pyridine (B) and solvent. In the pure solvent both the dielectric constant and the specific volume were linear functions of the weight fraction of phenol $(w_{\rm A})$, and the slopes of these functions were used in the Halverstadt and Kumler⁷ expression to calculate the extrapolated total molar polarisation of phenol in the solvent $(P_{A\infty})_{s}$. In the mixed solvents the specific volume was a linear function of $w_{\rm A}$ within the limits of experimental error, but the dielectric constant was not. Within the limits of experimental error the variation of dielectric constant was adequately fitted to a cubic function of $w_{\rm A}$ over the range of concentrations used. The limiting value of $d\varepsilon/dw_{\rm A}$ at infinite dilution was taken as the intercept of $(\varepsilon_{ABS} - \varepsilon_{BS})/w_A$ as a function of w_A , which was fitted by computer⁸ to a cubic polynomial in $w_{\mathbf{A}}$. The extrapolated total molar polarisation of phenol in the mixed solvent $(P_{A\infty})_{BS}$ is calculated using the slope dv/dw_A and the limiting value of $d\varepsilon/dw_A$ at infinite dilution in the Halverstadt and Kumler expression. w_{B}' is the weight fraction of pyridine in the solvent mixture, M_n is the molecular weight of pyridine, ΔP is the change in total molar polarisation on making 1 mole of complex from phenol and pyridine in solution. ΔP is used to calculate the dipole moment of the complex, ΔP and the equilibrium constant K l. mole⁻¹ being obtained from the Few and Smith³ type of expression:

$$\frac{w_{\mathbf{B}}'}{v_{\mathbf{B}\mathbf{S}}[(P_{\mathbf{A}\infty})_{\mathbf{B}\mathbf{S}} - (P_{\mathbf{A}\infty})_{\mathbf{S}}]} = \frac{w_{\mathbf{B}}'}{v_{\mathbf{B}\mathbf{S}}\Delta P} + \frac{M_{\mathbf{B}}}{K\Delta P}$$

The derivation of this type of expression involves the assumption of 1:1 complex formation, and this has been shown to occur between phenol and pyridine in 0.1 molar solution by Chrétien and Laurent⁹ who studied the dielectric constant of various mixtures and applied Job's method.

The measurement of physical properties has involved the assumption of the following values for pure solvents (*n* is the refractive index for sodium light):

TABLE 1.

Solvent properties.

Solvent	Temp.	ε	v	n
Benzene	25° 40	$2 \cdot 2741^{10} \\ 2 \cdot 2440^{12}$	$1 \cdot 1446^{11} \\ 1 \cdot 1665^{11}$	1.498011
Carbon tetrachloride	$\begin{array}{c} 25 \\ 45 \end{array}$	$2 \cdot 2280^{12} \\ 2 \cdot 1880^{12}$	$0.6312^{11} \\ 0.6467^{11}$	1.457611
n-Heptane	$\begin{array}{c} 25 \\ 45 \end{array}$	1.9139^{12} 1.8890^{12}	$1 \cdot 4717^{11} \\ 1 \cdot 5103^{11}$	1.385111

7 I. F. Halverstadt and W. D. Kumler, J. Amer. Chem. Soc., 1942, 64, 2988.

⁸ J. H. Cadwell, Ferranti Mercury Computer Library Service, Autocode Programme 1000, Issue 1, 1959.

9 A. Chrétien and P. Laurent, Compt. rend., 1932, 195, 792.

 L. Hartshorn, J. V. L. Parry, and L. Essen, Proc. Phys. Soc., 1955, 68B, 422.
 J. Timmermans, "Physico Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.

¹² A. A. Maryott and E. R. Smith, "Tables of Dielectric Constants of Pure Liquids," N.B.S. Circular 514, 1951.

TABLE 2.

Results for solutions.

			F memor	m benzene.	+ pyname at	. 40 .			
$10^6 w_{\rm B}'$	$10^6 w_{\mathrm{A}}$	Ê	υ	n	$10^{6}w_{B}'$	$10^6 w_A$	ε	υ	n
0	0	$2 \cdot 2741$	1.1446	1.49800	3565	ō	2.2982	1.1442	1.49800
Ũ	600	2.2758	1.1445	1 10000	0000	1455	2.3104	1 1112	1.40904
	1560	0.0780	1.1444			1400	0.9900	1.1499	1 40010
	9445	4.7102	1.1441	1 40017		4042	2.3377	1.1402	1.49010
	2440		1.1441	1.49817		7708	2.3493	1.1422	1.49841
	2510	2.2808	1.1441			12,992	2.3739		1.49871
	33 00	2.2828	1.1439			16,543	$2 \cdot 3882$	1.1404	1.49890
	3454		1.1438	1.49821	3869	0	$2 \cdot 2997$	1.1440	1.49803
	3790	$2 \cdot 2840$	1.1438			770	$2 \cdot 3067$	1.1439	1.49805
	7217		1.1430	1.49836		1623	2.3137	1.1437	1.40807
	13 938		1.1415	1.40974		2020	2.3946	1.1494	1.40919
647	10,200	0.0796	1.1445	1 40000		5005	2.3240	1 1404	1 40004
047		2.2100	1.1440	1.49800	0	5054	2.3414	1.1429	1.49834
	754	2.2820		1.49804	8552	0	2.3311	1.1433	1.49807
	1948	$2 \cdot 2866$	1.1442	1.49804		1651	2.3496	1.1430	1.49813
	3877	$2 \cdot 2934$	1.1438	1.49815		2953	$2 \cdot 3630$	1.1426	1.49830
	5604	$2 \cdot 2993$	1.1433	1.49822		4732	2.3810	1.1421	1.49841
	8001	$2 \cdot 3068$	1.1428	1.49830		8156	2.4118		1.49860
					5333	0	2.3095	1.1440	1.49800
					16 969	ŏ	0.9995	1.1495	1 10000
					10,208	0	2.3030	1.1429	
			Pher	ol in benzer	ne + pyridine	at 40°.			
	106	/ 106	1 1101			108			
	10.0	B $10^{\circ}w_A$	ε	υ	10° <i>w</i> _B ′	$10^{\circ}w_{\rm A}$	ε	υ	
	0	0	$2 \cdot 2440$	1.1665	2905	0	$2 \cdot 2619$	1.1660	
		2025	$2 \cdot 2490$	1.1660		956	2.2678	1.1659	
		3068	$2 \cdot 2516$	1.1658		2134	2.2743	1.1656	
		4797	2.2561			5287	2.2901	- 1000	
		7577	2.2630	1.1640		0449	2.2001	1.1628	
		10.060	2.2000	1.1649		19 900	2.3011	1.1690	
		10,000	2.2090	1.1042	8011	13,380	2.3227	1.1029	
	552	. 0	2.2476	1.1665	7611	0	2.2909	1.1654	
		1154	$2 \cdot 2516$	1.1661		1506	2.3042	1.1650	
		2660	$2 \cdot 2565$			3531	$2 \cdot 3211$	1.1646	
		4438	$2 \cdot 2619$			7221	$2 \cdot 3476$	1.1636	
		6816	$2 \cdot 2689$	1.1648		13.075	2.3835		
		9074	2.2753	1.1643		17 785	2.4075	1.1609	
		0011	2 2100	1 1010	1536	11,100	2.2537	1.1664	
					1000	0	2 2001	1,1004	
		F	Phenol in c	arbon tetra	chloride + py	ridine at	25°.		
106 /	106	-			106	106	-0.		
$10^{\circ}w_{\rm B}$	$10^{\circ}w_{\rm A}$	ε	v	n	$10^{\circ}w_{\rm B}$	$10^{\circ}w_{\rm A}$	ε	v	n
0	0	2.2280	0.6312	1.45760	1202	0	$2 \cdot 2442$	0.6317	1.45775
	1287	$2 \cdot 2336$	0.6317	1.45799		982	$2 \cdot 2574$	0.6319	
	3607	$2 \cdot 2442$	0.6324	1.45824		3199	$2 \cdot 2786$	0.6326	
	6461	2.2577	0.6333	1.45860		5384	$2 \cdot 2951$	0.6333	
	9430	2.2718		1.45903		7503	2.2001	0.6340	
	19 980	9.9951	0.6260	1.45049	9907	1000	2.9590	0.6990	
207	12,200	0.0000	0.6914	1.40942	2307	1510	0.0004	0.6320	
321	101	2.2323	0.0314			1510	2.2834	0.0325	
	481	2.2362	0.6315			3830	2.3126	0.6332	
	1468	2.2429	0.6318			5950	$2 \cdot 3331$	0.6338	
	2583	2.2495	0.6321			9712	$2 \cdot 3617$	0.6320	
	3535	$2 \cdot 2547$			4565	0	$2 \cdot 2894$	0.6330	1.45816
	4353	$2 \cdot 2591$	0.6327			1670	$2 \cdot 3222$	0.6334	1.45860
	1000		0 0021			4430	2.3685	0.6342	1.45895
						7559	2.4099	0.6951	1.45025
						1000	2.4000	0.0351	1.45000
						10,075	2.4322	0.0328	1.49990
		r	Phonol in a	arbon totra	chloride L pr	rriding at	450		
	100	/ 100 ¹	memor m (arbon tetta	cmonue + py		. 40 .		
	10 ⁶ w	$B' = 10^{6} w_{A}$	ε	v	$10^6 w_{\rm B}'$	$10^6 w_{\mathrm{A}}$	ε	v	
	() 0	2.1880	0.6467	664	0	2.1960	0.6470	
		1640	2.1944		00-	749	2.2016	0.6472	
		9871	2.1004	0.6476		1917	2.2010	0.0112	
		4979	9,9050	0.0110		9000	9.9147	0.6477	
		40/0	4.2000	0.0407		2800	4.7141	0.0411	
		6439	2.2143	0.6487		4147	2.2223		
	285	0	2.1915	0.6468		6088	2.2327	0.6489	
		331	2.1934		1351	0	$2 \cdot 2041$	0.6471	
		978	$2 \cdot 1969$	0.6471		395	2.2081		
		2066	$2 \cdot 2025$	0.6471		1619	2.2195	0.6477	
		3182	2.2081			3490	$2 \cdot 2342$	0.6483	
		4608	$2 \cdot 2148$	0.6482		5205	$2 \cdot 2457$		
		2000	0			7048	2.2572	0.6493	
								0 0 100	

View Online

TABLE 2. (continued).

Phenol in n-heptane + pyridine at 25°.

10 ⁶ w _B '	$10^6 w_{\rm A}$	ε	υ	n	$10^6 w_{\rm B}$	$10^6 w_{\rm A}$	ε	υ	n
0	0	1.9139	1.4717	1.38510	2144	0	1.9238	1.4708	1.38526
-	5784	1.9243		1.38560		1503	1.9333		1.38548
	11.525	1.9347	1.4660	1.38610		3437	1.9431	1.4688	1.38573
	17.523	1.9452	1.4630	1.38669		5671	1.9517	1.4677	1.38598
	25.395	1.9595		1.38758		7760	1.9582	1.4665	1.38619
0	. 0	1.9139	1.4717	1.38510		12, 147	1.9698	1.4642	1.38657
	1663	1.9169	1.4712	1.38519	4713	· 0	1.9358	1.4697	1.38556
	4086	1.9210		1.38540		1837	1.9505	1.4686	1.38577
	5781	1.9242		1.38561		2949	1.9584	1.4679	1.38585
	7579	1.9276		1.38589		4434	1.9681	1.4671	1.38602
	9940	1.9315	1.4668	1.38595		6728	1.9806	1.4660	1.38627
1197	0	1.9194	1.4711	1.38522		12,440	2.0042		1.38686
	1545	1.9271	1.4703	1.38539		15,035	2.0124	1.4612	1.38720
	2864	1.9320		1.38547	8361	0	1.9525	1.4682	1.38577
	4022	1.9358		1.38556		1972	1.9702		1.38598
	5399	1.9396		1.38577		4214	1.9885	1.4657	1.38623
	6599	1.9428	1.4678	1.38590		6437	2.0048	<u> </u>	1.38652
						10,138	2.0284	1.4625	1.38690
						16,709	2.0600	1.4588	1.38762

Phenol in n-heptane+pyridine at 45°.

$10^6 w_{ m B}'$	$10^6 w_{\rm A}$	ε	υ	$10^6 w_{ m B}$ '	$10^6 w_A$	ε	v
0	0	1.8890	1.5103	1663	0	1.8918	1.5100
	3177	1.8940			1936	1.9035	
	6102	1.8989	1.5070		3683	1.9090	1.5078
	10,211	1.9059	1.5049		5702	1.9149	1.5069
	13,190	1.9109	1.5034		8722	1.9226	<u> </u>
696	0	1.8918	1.5100		12,471	1.9310	1.5029
	965	1.8946		5888	0	1.9136	1.5078
	1682	1.8965	1.5091		2154	1.9274	
	3014	1.8996	1.5085		4019	1.9381	
	4490	1.9029	1.5076		4693	1.9416	1.5053
	6621	1.9074	1.5066		8653	1.9604	1.5031
					13,502	1.9791	
					18,598	1.9953	1.4975

Values of functions for phenol

10 ⁶ w _B '	$\mathrm{d} \boldsymbol{\varepsilon} / \mathrm{d} w_{\mathbf{A}}$	$\mathrm{d}v/\mathrm{d}w_{\mathbf{A}}$	$\mathrm{d}n/\mathrm{d}w_{\mathbf{A}}$	$(_T P_A^{\infty})_{\rm BS}$	${}_{E}P_{A}$ Calc.: 27.7
0	$2 \cdot 61 + 0 \cdot 03$	-0.22 + 0.01	0.06	$72 \cdot 1$	$27 \cdot 3$
647	$4.86^{$	-0.21 + 0.01	0.04	112.0	28.2
3565	8.99	-0.22 ± 0.01	0.05	$183 \cdot 5$	28.2
3869	9.63	-0.19 ± 0.01	0.06	195.4	29.5
8552	11.4	-0.24 ± 0.02	0.07	$222 \cdot 3$	28.8
0	$2 \cdot 50 \pm 0 \cdot 01$	-0.23 ± 0.02		71.5	
552	3.59	-0.24 ± 0.01		91.2	
2905	6.41	-0.26 ± 0.02		$142 \cdot 2$	
7611	9.13	-0.25 ± 0.01		$192 \cdot 2$	
trachloride					
0	4.55 ± 0.01	0.36 ± 0.03	0.15	72.5	29.7
327	8.69-	0.27 ± 0.03		$112 \cdot 2$	
1202	15.33	0.29 + 0.02		177.2	
2307	17.99	0.31 + 0.01		203.5	
4565	20.73	0.27 + 0.02	0.17	226.9	$29 \cdot 1$
0	$4 \cdot 05 \pm 0 \cdot 03$	0.31 ± 0.01		67.7	
285	5.89	0.32 ± 0.02		87.1	
664	7.79	0.32 ± 0.02		106.7	
1351	10.33	0.32 ± 0.02		$132 \cdot 9$	
	$10^{6}w_{B}'$ 0 647 3565 3869 8552 0 552 2905 7611 trachloride 0 327 1202 2307 4565 0 285 664 1351	$\begin{array}{ccccccc} 10^{6}w_{\rm B}' & {\rm d}\varepsilon/{\rm d}w_{\rm A} \\ \\ 0 & 2\cdot61\pm0\cdot03 \\ 647 & 4\cdot86 \\ 3565 & 8\cdot99 \\ 3869 & 9\cdot63 \\ 8552 & 11\cdot4 \\ 0 & 2\cdot50\pm0\cdot01 \\ 552 & 3\cdot59 \\ 2905 & 6\cdot41 \\ 7611 & 9\cdot13 \\ \end{array}$ trachloride $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Bishop and Sutton: Study of the

TABLE 2—continued

n-Heptane						
25° 45°	$\begin{array}{c} 0\\ 1197\\ 2144\\ 4713\\ 8361\\ 0\\ 696\\ 1663\\ 5888 \end{array}$	$\begin{array}{c} 1 \cdot 795 \pm 0 \cdot 005 \\ 5 \cdot 94 \\ 6 \cdot 96 \\ 8 \cdot 57 \\ 9 \cdot 38 \\ 1 \cdot 64 \pm 0 \cdot 02 \\ 3 \cdot 12 \\ 4 \cdot 46 \\ 6 \cdot 82 \end{array}$	$\begin{array}{c} -0.496 \pm 0 \\ -0.55 \pm 0.0 \\ -0.55 \pm 0.0 \\ -0.53 \pm 0.0 \\ -0.53 \pm 0.0 \\ -0.53 \pm 0.0 \\ -0.53 \pm 0.0 \\ -0.51 \pm 0.0 \\ -0.55 \pm 0.0 \end{array}$	$\begin{array}{cccc} 0.002 & 0.10 \\ 0.1 & 0.10 \\ 0.1 & 0.13 \\ 0.1 & 0.11 \\ 0.1 & 0.11 \\ 0.1 & 0.11 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ \end{array}$	$\begin{array}{c} 70 \cdot 1 \\ 182 \cdot 0 \\ 208 \cdot 1 \\ 249 \cdot 7 \\ 269 \cdot 5 \\ 67 \cdot 3 \\ 109 \cdot 4 \\ 146 \cdot 2 \\ 210 \cdot 7 \end{array}$	28·7 28·9 29·9 27·7 28·3
		Values	of functions for	pyridine		
Temp.	dɛ/e	$\mathrm{d}w_{\mathbf{B}}$	$\mathrm{d}v/\mathrm{d}w_{\mathbf{B}}$	$\mathrm{d}n/\mathrm{d}w_{\mathbf{B}}$	$(_TP_{\mathbf{B}\infty})_{\mathbf{S}}$	$_{E}P_{B}$ Calc.: 24.5
Benzene						
25° 40°	6·68± 6·16±	$\begin{array}{ccc} 0.05 & - \\ 0.05 & - \end{array}$	0.14 ± 0.02 0.14 ± 0.02	0	$123.0 \\ 118.5$	25.3
Carbon tetracl	hloride					
25° 45°	$13.45 \\ 12.0$	± 0·02 ± 0·1	$0.40 \pm 0.02 \\ 0.30 \pm 0.02$	0.12	$136.4 \\ 126.2$	25.4
n-Heptane						

DISCUSSION

0.08

 0.42 ± 0.02

0.42 + 0.01

The variation of the apparent total polarisation of phenol $(P_{A\infty})$ with mole fractions of pyridine (f_B') in the solvent mixture at 25° is shown in the Figure.

 4.62 ± 0.01

 4.18 ± 0.02

Graph of apparent total polarisation of phenol at 25° $(P_{A\infty})$ in c.c. (as ordinate) against mole fraction of pyridine (f_B') (as abscissa).

124.7

118.8

24.7

Solvents: x = benzene, $\bigcirc =$ carbon tetrachloride, $\triangle =$ n-heptane.

From this it appears that the complex is more stable in n-heptane than in either benzene or carbon tetrachloride and this is borne out by the equilibrium constants (see Table 3). It is clear also that equilibrium-constant values from dielectric-constant observations agree well with those obtained by infrared measurements on carbon tetrachloride solutions and by ultraviolet measurements on n-heptane solutions. Furthermore, although the error limits are greater in the values from dielectric measurements than in the best of the spectroscopic ones, we confirm the view of Few and Smith that the dielectric method is very useful. Curve fitting (see Experimental section) by computer gives a great increase in consistency.

There is a definite solvent effect which is especially marked in benzene solutions. This is probably due to complexing of one or more components with the solvent; even if the equilibrium constant for this were much smaller than that for the A–B reaction, the relatively great solvent concentration might make it important. Interaction between phenol and

 25°

 45°

View Online

TABLE 3.

Equilibrium results for phenol and pyridine.

Solvent	Temp.	Ref.	Method	K (l. mole ⁻¹)	$-\Delta H$ (kcal. mole ⁻¹)	$-\Delta S$ e.u.			
Benzene	25° 40	a a	ε	$\left. \begin{array}{c} 36\pm2\\ 17\pm1 \end{array} ight brace$	9 ± 2	24 ± 3			
Carbon tetra-	$\begin{array}{c} 25 \\ 45 \end{array}$	a a	ε	$\left. \begin{array}{c} 45\pm5\\ 21\pm1 \end{array} \right\}$	7 ± 2	17 ± 3			
chloride	$18-20 \\ 25$	$\begin{array}{c} 13\\14 \end{array}$	i.r. i.r.	$55\pm10\\42$					
	20 55 30—60	$15 \\ 15 \\ 16$	i.r. i.r. i.r.	$\left.\begin{array}{c}52\cdot1\pm1\cdot5\\15\cdot5\pm0\cdot6\end{array}\right\}$	6.5 ± 0.4 5	$14 \cdot 4 \pm 1 \cdot 3$			
n-Heptane	$\begin{array}{c} 25\\ 45 \end{array}$	a a	ε ε	$\left. \begin{array}{c} 80\pm5\\ 43\pm2 \end{array} ight brace$	6 ± 2	11 ± 3			
	$\begin{array}{c} 22 \\ 40 \end{array}$	17 17	u.v. u.v.	$\left. \begin{array}{c} 88\\49 \end{array} \right\}$	6	11.4			
	a = present work.								

benzene or halogenocarbons has already been reported from infrared studies 18, 19 as has been interaction between pyridine and carbon tetrachloride from dielectric studies.²⁰ The small variations of electric dipole moment in the several solvents (see Table 4) are consistent with these interactions and suggest further that there is no specific interaction between pyridine and benzene.

TABLE 4.

Measured dipole moments (D).

Solvent	Temp.	Phenol	Pyridine	Complex	Δμ
Benzene	$\frac{25^{\circ}}{40}$	$1 \cdot 47 \pm 0 \cdot 02 \\ 1 \cdot 51 \pm 0 \cdot 02$	$2 \cdot 20 \pm 0 \cdot 02$ $2 \cdot 20 \pm 0 \cdot 02$	$4.06 \pm 0.05 \\ 4.20 \pm 0.05$	$0.6 \\ 0.7$
Carbon tetrachloride	$\begin{array}{c} 25 \\ 45 \end{array}$	1.47 ± 0.01 1.45 ± 0.01	$\begin{array}{c} 2 \cdot 34 \pm 0 \cdot 01 \\ 2 \cdot 30 \pm 0 \cdot 02 \end{array}$	$4 \cdot 15 \pm 0 \cdot 05 \\ 4 \cdot 11 \pm 0 \cdot 05$	0·6 0·6
n-Heptane	$\begin{array}{c} 25 \\ 45 \end{array}$	1.44 ± 0.01 1.44 ± 0.01	$2 \cdot 21 \pm 0 \cdot 01$ $2 \cdot 22 \pm 0 \cdot 01$	$4 \cdot 30 \pm 0 \cdot 03$ $4 \cdot 25 \pm 0 \cdot 03$	$0.9 \\ 0.9$

It is relatively easy to show that the true equilibrium constant, K_{AB} , is related to the apparent one, K'_{AB} , reported in Table 3, by the expression

$$K_{AB} = K'_{AB}(1 + sK_{AS})(1 + sK_{BS})$$

where K_{AS} and K_{BS} are the association constants for reactants with solvent (all evaluated in concentration units) and s is the concentration of the solvent. From the equilibrium constant for the phenol-benzene interaction 21 which is 0.25 l. mole⁻¹ at 25° and the concentration of benzene (11·1 moles l.-1), assuming that activity equals concentration and also that there is no pyridine-benzene interaction (see above), a value of $K_{AB} = 136$ l. mole⁻¹ is obtained. This is considerably greater than the value of 80 ± 5 at 25° found for K'_{AB} in n-heptane which we believe approximates to K_{AB} , the true value, because there is no evidence for specific interaction of either component with this solvent. The agreement is

¹³ N. Fuson, P. Pineau, and M.-L. Josien, J. Chim. phys., 1958, 55, 454.

¹⁴ A. Halleux, Bull. Soc. chim. belges, 1959, 68, 381.

¹⁵ H. Dunken and H. Fritsche, Z. Chem., 1962, 2, 345.
 ¹⁶ M. Tsuboi, J. Chem. Soc. Japan, 1951, 72, 146.

 A. K. Chandra and S. Banerjee, J. Phys. Chem., 1962, 66, 952.
 A. Allerhand and P. von R. Schleyer, J. Amer. Chem. Soc., 1963, 85, 371.
 R. West, D. L. Powell, L. S. Whatley, M. K. T. Lee, and P. von R. Schleyer, J. Amer. Chem. Soc., 1962, 84, 3221.

²⁰ A. N. Sharpe and S. Walker, J., 1961, 2974; 1962, 157.

²¹ R. West, personal communication, 14th October, 1963.

about as good as can be expected and it certainly shows the importance of such specific solvent interactions. The values of K'_{AB} in carbon tetrachloride are nearer to those in benzene than to those in n-heptane so the arguments against regarding benzene as an inert solvent in hydrogen-bonding studies may on occasion apply also to carbon tetrachloride. Because values for K_{AS} and K_{BS} are lacking, no correction can yet be made to the apparent equilibrium constant in this solvent. Solvent effects on the infrared spectra of pure compounds in solution have been widely discussed. Several attempts have been made to correlate band shifts in solution with dielectric effects and with specific interactions with the solvent.^{18, 22, 23}

Values of $-\Delta H$ calculated from the variation of K'_{AB} with temperature are given in Table 3. These are likely to be affected by solvent, so the value of 6 kcal. mole $^{-1}$ found from both spectroscopic and dielectric measurements on n-heptane solutions has most significance.

From the electric dipole moment found for the complex (see Table 4) the excess moment $\Delta \mu$, arising from the electron and nuclear perturbations caused by hydrogen bonding, can be obtained if the moment of the unperturbed system can be calculated. For this to be done, however, the relative orientations of the moments of phenol and of pyridine must be known, *i.e.*, the structure must be known.

Structure (I) is the more probable but, because of the complexing found between phenol and benzene² and because of the structure found for the bromine-benzene compound, 24 the possibility of a structure such as (II) cannot be ignored. Assuming the moment of phenol to act towards the oxygen lone pairs at an angle of 66.25 °with the Ph–O direction and at 138.25° with the O-H bond, 25 a value of 3.44 D is calculated for the moment of (I) and of 2.65 D for (II). The excess moments calculated for structure (I) are given in Table 4; they average about 0.7 D, but the value of 0.9 D in n-heptane is probably the most significant. The excess moment for structure (II) would be at least 3 D (the pyridine molecule could rotate about the OH axis), which is so improbably large that this structure is rejected. The excess moment calculated for structure (I) is comparable with those obtained by Hulett, Pegg, and Sutton⁶ for complexes between trimethylamine and various phenols, by a different method but again assuming a structure of type (I).

The authors thank the Salters' Institute for the award of a Scholarship to R. J. B.

PHYSICAL CHEMISTRY LABORATORY. OXFORD.

[Received, October 28th, 1964.]

²² R. L. Williams, Ann. Reports 1961, 58, 34.

A. D. Buckingham, Trans. Faraday Soc., 1960, 56, 753.
O. Hassel and K. O. Strømme, Acta Chem. Scand., 1958, 12, 1146.
J. W. Smith, "Electric Dipole Moments," Butterworths, London, 1955.