1172. The Study of the Equilibrium Constant of Complex Formation between Phenol and Pyridine in Solution by a Dielectric Constant Method.

By R. J. Bishop and L. E. Sutton.

Abstract

Few and Smith's dielectric-constant method is used to measure the equilibrium constant complex formation, and dipole moment of the complex, between phenol and pyridine in benzene, carbon tetrachloride, and n-heptane solutions in order to check and extend results obtained by spectroscopic methods. Solvent effects are detected. Excess moments are derived and discussed.

ONE of the fundamental stepsin studying complexes in solution is to determine the equilibrium constant of the reaction $x \mathrm{~A}+y \mathrm{~B} \rightleftharpoons \mathrm{~A}_{x} \mathrm{~B}_{y}$ in the presence of a third substance S as solvent. It is necessary to ascertain x / y, which is usually done by some form of Job's method, ${ }^{1}$ and then measure the actual concentration of one species, viz., A, B, or $\mathrm{A}_{x} \mathrm{~B}_{y}$, the initial concentrations of two of A, B, or $\mathrm{A}_{x} \mathrm{~B}_{y}$ being known.

The available methods for measuring concentrations are all of limited usefulness. For the particular case of complex formation through hydrogen bonding ${ }^{2}$ the most commonly used ones for such homogeneous three-component systems are infrared or ultraviolet spectroscopy. The first of these methods cannot normally be used for solutions in hydrocarbons but only in solvents such as carbon tetrachloride, whereas for the second the reverse applies. Crosschecking of methods is therefore limited. If, as actually happens, there is discordance between the results, it is not certain whether this shows genuine solvent effect or is merely due to systematic error.

Few and Smith ${ }^{3}$ developed a method based on dielectric-constant measurements from a suggestion made by Hammick, Norris, and Sutton, ${ }^{4}$ and Cleverdon, Collins, and Smith ${ }^{5}$ applied it. This method is not as quick and possibly not as accurate as the spectroscopic methods but it can be applied to solutions in any non-polar solvent. In addition, because the electric dipole moment of the complex can be obtained, this method may give information about the stereochemistry of the complex and the electronic perturbations therein. ${ }^{6}$ The method has now been applied to determine the equilibrium between pyridine and phenol in benzene, carbon tetrachloride, and n-heptane solutions in order to extend and clarify the earlier spectroscopic investigations and also in order to establish it further.

[^0]
Experimental

Purification of Compounds.-Benzene (AnalaR) was fractionally frozen three times, an unfrozen fifth part being discarded each time, leaving about one-half of the original amount. This was kept over phosphorus pentoxide, distilled from fresh phosphorus pentoxide in a stream of dry air on the day of use, and kept under a pressure of dry air. Carbon tetrachloride (AnalaR and n-heptane (I.P. specification) were kept over phosphorus pentoxide, distilled from fresh phosphorus pentoxide on the day of use, and kept under a pressure of dry air. Phenol (AnalaR) was distilled at atmospheric pressure (b. p. $18 \mathbf{2}^{\circ}$); the middle cut was redistilled into breakable glass phials which were sealed until used. Pyridine (AnalaR) was fractionally distilled through a $1 \mathrm{~m} . \times 1 \mathrm{~cm}$. column packed with glass helices; the middle cut (b. p. 115°) was redistilled and pipetted into phials similar to those used for phenol.

Physical Measurements.-Measurements of dielectric constant (ε) and specific volume (v) were made on dilute solutions of phenol (A) in solvent (S) and in various constant mixtures of pyridine (B) and solvent. In the pure solvent both the dielectric constant and the specific volume were linear functions of the weight fraction of phenol $\left(w_{\Delta}\right)$, and the slopes of these functions were used in the Halverstadt and Kumler ${ }^{7}$ expression to calculate the extrapolated total molar polarisation of phenol in the solvent $\left(P_{\Delta \infty}\right)_{s}$. In the mixed solvents the specific volume was a linear function of w_{A} within the limits of experimental error, but the dielectric constant was not. Within the limits of experimental error the variation of dielectric constant was adequately fitted to a cubic function of w_{Δ} over the range of concentrations used. The limiting value of $\mathrm{d} \varepsilon / \mathrm{d} w_{\Delta}$ at infinite dilution was taken as the intercept of $\left(\varepsilon_{\text {ABS }}-\varepsilon_{\text {BS }}\right) / w_{\Delta}$ as a function of w_{Δ}, which was fitted by computer ${ }^{8}$ to a cubic polynomial in w_{Δ}. The extrapolated total molar polarisation of phenol in the mixed solvent $\left(P_{\Delta \infty}\right)_{\text {BS }}$ is calculated using the slope $\mathrm{d} v / \mathrm{d} w_{\mathbf{A}}$ and the limiting value of $\mathrm{d} \varepsilon / \mathrm{d} w_{\mathrm{A}}$ at infinite dilution in the Halverstadt and Kumler expression. $w_{B}{ }^{\prime}$ is the weight fraction of pyridine in the solvent mixture, M_{B} is the molecular weight of pyridine, ΔP is the change in total molar polarisation on making 1 mole of complex from phenol and pyridine in solution. ΔP is used to calculate the dipole moment of the complex, ΔP and the equilibrium constant $K 1$. mole ${ }^{-1}$ being obtained from the Few and Smith ${ }^{3}$ type of expression:

$$
\frac{w_{\mathrm{B}}^{\prime}}{v_{\mathrm{Bg}}\left[\left(P_{\Delta \infty}\right)_{\mathrm{BS}}-\left(P_{\mathrm{A} \infty}\right)_{\mathrm{A}}\right]}=\frac{w_{\mathrm{B}}^{\prime}}{v_{\mathrm{BS}} \Delta P}+\frac{M_{\mathrm{B}}}{K \Delta P}
$$

The derivation of this type of expression involves the assumption of $1: 1$ complex formation, and this has been shown to occur between phenol and pyridine in $0 \cdot 1$ molar solution by Chrétien and Laurent ${ }^{9}$ who studied the dielectric constant of various mixtures and applied Job's method.

The measurement of physical properties has involved the assumption of the following values for pure solvents (n is the refractive index for sodium light):

Table 1.
Solvent properties.

Solvent	Temp.	ε	v	n
Benzene	25°	2.2741^{10}	$\mathbf{1} \cdot 1446^{11}$	$\mathbf{1 . 4 9 8 0 ^ { 1 1 }}$
	40	2.2440^{12}	$1 \cdot 1665^{11}$	-
Carbon tetrachloride	25	2.2280^{12}	0.6312^{11}	$\mathbf{1 . 4 5 7 6 ^ { 1 1 }}$
	45	$2 \cdot 1880^{12}$	0.6467^{11}	-
n-Heptane	25	1.9139^{12}	1.4717^{11}	1.3851^{11}
	45	1.8890^{12}	1.5103^{11}	

[^1]Table 2.
Results for solutions.
Phenol in benzene + pyridine at 25°.

$10^{6} w_{B}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	n	$10^{6} w_{\mathrm{B}}^{\prime}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	n
${ }^{\text {B }}$	0	$2 \cdot 2741$	1-1446	1.49800	3565	0	$2 \cdot 2982$	1-1442	$1 \cdot 49800$
	600	$2 \cdot 2758$	1-1445	-		1455	$2 \cdot 3104$	-	$1 \cdot 49804$
	1560	$2 \cdot 2782$	$1 \cdot 1444$	-		4642	$2 \cdot 3322$	$1 \cdot 1433$	$1 \cdot 49816$
	2445	-	$1 \cdot 1441$	1.49817		7708	$2 \cdot 3493$	$1 \cdot 1425$	1-49841
	2510	$2 \cdot 2808$	$1 \cdot 1441$	-		12,992	$2 \cdot 3739$		$1-49871$
	3300 2	$2 \cdot 2828$	1-1439			16,543	$2 \cdot 3882$	1-1404	$1 \cdot 49890$
	3454	-	$1 \cdot 1438$	1.49821	3869	0	$2 \cdot 2997$	$1 \cdot 1440$	$1 \cdot 49803$
	3790	$2 \cdot 2840$	$1 \cdot 1438$	-		770	$2 \cdot 3067$	$1 \cdot 1439$	$1 \cdot 49805$
	7217	-	$1 \cdot 1430$	1.49836		1623	$2 \cdot 3137$	$1 \cdot 1437$	$1 \cdot 49807$
	13,238		$1 \cdot 1415$	$1 \cdot 49874$		3089	$2 \cdot 3246$	$1 \cdot 1434$	$1 \cdot 49818$
647	- 0	$2 \cdot 2786$	$1 \cdot 1445$	1.49800		5654	$2 \cdot 3414$	$1 \cdot 1429$	$1 \cdot 49834$
	754	$2 \cdot 2820$		1.49804	8552	0	$2 \cdot 3311$	$1 \cdot 1433$	$1 \cdot 49807$
	1948	$2 \cdot 2866$	$1 \cdot 1442$	1.49804		1651	$2 \cdot 3496$	$1 \cdot 1430$	$1 \cdot 49813$
	3877	$2 \cdot 2934$	1-1438	1.49815		2953	$2 \cdot 3630$	$1 \cdot 1426$	$1 \cdot 49830$
	56042	$2 \cdot 2993$	$1 \cdot 1433$	1.49822		4732	$2 \cdot 3810$	1-1421	$1 \cdot 49841$
	80012	$2 \cdot 3068$	1-1428	1.49830		8156	$2 \cdot 4118$	-	$1 \cdot 49860$
					5333	0	$2 \cdot 3095$	1-1440	$1 \cdot 49800$
					16,268	0	$2 \cdot 3835$	$1 \cdot 1425$	-
	Phenol in benzene + pyridine at 40°.								
	$10^{6} w_{\mathrm{B}}{ }^{\prime} \quad 10^{6} w_{\mathrm{A}}$		ε	v	$10^{6} w_{\text {B }}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	
	0	0	$2 \cdot 2440$	$1 \cdot 1665$	2905	0	$2 \cdot 2619$	$1 \cdot 1660$	
		2025	$2 \cdot 2490$	$1 \cdot 1660$		956	$2 \cdot 2678$	$1 \cdot 1659$	
		3068	$2 \cdot 2516$	$1 \cdot 1658$		2134	$2 \cdot 2743$	1.1656	
		4797	$2 \cdot 2561$	-		5287	$2 \cdot 2901$	-	
		7577	$2 \cdot 2630$	1-1649		9449	$2 \cdot 3077$	1-1638	
		10,060	$2 \cdot 2690$	$1 \cdot 1642$		13,386	$2 \cdot 3227$	$1 \cdot 1629$	
	552	0	$2 \cdot 2476$	1-1665	7611	0	$2 \cdot 2909$	1-1654	
		1154	$2 \cdot 2516$	$1 \cdot 1661$		1506	$2 \cdot 3042$	$1 \cdot 1650$	
		2660	$2 \cdot 2565$	-		3531	$2 \cdot 3211$	$1 \cdot 1646$	
		4438	$2 \cdot 2619$	-		7221	$2 \cdot 3476$	$1 \cdot 1636$	
		6816	$2 \cdot 2689$	$1 \cdot 1648$		13,075	$2 \cdot 3835$	-	
		9074	$2 \cdot 2753$	$1 \cdot 1643$		17,785	$2 \cdot 4075$	$1 \cdot 1609$	
					1536	0	$2 \cdot 2537$	1-1664	
Phenol in carbon tetrachloride + pyridine at 25°.									
$10^{6} w_{\text {B }}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	n	$10^{6} w_{\text {B }}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	n
0	0	$2 \cdot 2280$	0.6312	1.45760	1202	0	$2 \cdot 2442$	0.6317	1-45775
	1287	2.2336	$0 \cdot 6317$	1.45799		982	$2 \cdot 2574$	$0 \cdot 6319$	
	3607	$2 \cdot 2442$	$0 \cdot 6324$	1.45824		3199	$2 \cdot 2786$	$0 \cdot 6326$	
	6461	$2 \cdot 2577$	$0 \cdot 6333$	1.45860		5384	$2 \cdot 2951$	$0 \cdot 6333$	
	9430	$2 \cdot 2718$	-	$1 \cdot 45903$		7593	$2 \cdot 3091$	$0 \cdot 6340$	
	12,280	$2 \cdot 2851$	$0 \cdot 6360$	$1 \cdot 45942$	2307	0	$2 \cdot 2589$	$0 \cdot 6320$	
327	0	$2 \cdot 2323$	$0 \cdot 6314$			1510	$2 \cdot 2834$	$0 \cdot 6325$	
	481	$2 \cdot 2362$	$0 \cdot 6315$			3830	$2 \cdot 3126$	$0 \cdot 6332$	
	1468	$2 \cdot 2429$	$0 \cdot 6318$			5950	$2 \cdot 3331$	$0 \cdot 6338$	
	2583	$2 \cdot 2495$	$0 \cdot 6321$			9712	$2 \cdot 3617$	$0 \cdot 6350$	
	3535	$2 \cdot 2547$	-		4565	0	$2 \cdot 2894$	$0 \cdot 6330$	1.45816
	4353	$2 \cdot 2591$	$0 \cdot 6327$			1670	$2 \cdot 3222$	$0 \cdot 6334$	$1 \cdot 45860$
						4430	$2 \cdot 3685$	$0 \cdot 6342$	1.45895
						7553	$2 \cdot 4088$	$0 \cdot 6351$	$1 \cdot 45935$
						10,075	$2 \cdot 4352$	$0 \cdot 6358$	$\mathbf{1} \cdot \mathbf{4 5 9 9 0}$

Phenol in carbon tetrachloride + pyridine at 45°.

$10^{6} w_{\mathrm{B}}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	$10^{6} w_{\text {B }}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v
0	0	$2 \cdot 1880$	$0 \cdot 6467$	664	0	$2 \cdot 1960$	0.6470
	1640	$2 \cdot 1944$	-		749	$2 \cdot 2016$	$0 \cdot 6472$
	2871	$2 \cdot 1996$	$0 \cdot 6476$		1817	$2 \cdot 2089$	-
	4373	$2 \cdot 2056$	-		2800	$2 \cdot 2147$	$0 \cdot 6477$
	6439	$2 \cdot 2143$	0.6487		4147	$2 \cdot 2223$	
285	0	$2 \cdot 1915$	$0 \cdot 6468$		6088	$2 \cdot 2327$	$0 \cdot 6489$
	331	2.1934	-	1351	0	$2 \cdot 2041$	$0 \cdot 6471$
	978	$2 \cdot 1969$	$0 \cdot 6471$		395	$2 \cdot 2081$	-
	2066	$2 \cdot 2025$	$0 \cdot 6471$		1619	$2 \cdot 2195$	$0 \cdot 6477$
	3182	$2 \cdot 2081$	-		3490	$2 \cdot 2342$	$0 \cdot 6483$
	4608	$2 \cdot 2148$	0.6482		5205	2.2457	-
					7048	$2 \cdot 2572$	$0 \cdot 6493$

Table 2. (continued).
Phenol in n -heptane + pyridine at 25°.

$10^{6} w_{B}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	n	$10^{6} w_{B}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v	n
0	0	1.9139	$1 \cdot 4717$	$1 \cdot 38510$	2144	0	1.9238	1.4708	1.38526
	5784	1.9243		$1 \cdot 38560$		1503	1.9333		1.38548
	11,525	1.9347	$1 \cdot 4660$	$1 \cdot 38610$		3437	1.9431	1.4688	$1-38573$
	17,523	1.9452	1.4630	1.38669		5671	1.9517	1.4677	$1 \cdot 38598$
	25,395	1.9595	-	1.38758		7760	1.9582	$1 \cdot 4665$	$1 \cdot 38619$
0	0	1.9139	1.4717	1.38510		12,147	1.9698	$1 \cdot 4642$	$1 \cdot 38657$
	1663	1.9169	$1 \cdot 4712$	$1 \cdot 38519$	4713	0	1.9358	$1 \cdot 4697$	$1 \cdot 38556$
	4086	1.9210	-	$1 \cdot 38540$		1837	1.9505	$1 \cdot 4686$	$1 \cdot 38577$
	5781	1.9242	-	$1 \cdot 38561$		2949	1.9584	$1 \cdot 4679$	$1 \cdot 38585$
	7579	1.9276	--	$1 \cdot 38589$		4434	1.9681	1.4671	$1 \cdot 38602$
	9940	1.9315	1.4668	1.38595		6728	1.9806	$1 \cdot 4660$	1.38627
1197	0	1.9194	1.4711	$1 \cdot 38522$		12,440	$2 \cdot 0042$	-	$1 \cdot 38686$
	1545	1.9271	$1 \cdot 4703$	$1 \cdot 38539$		15,035	$2 \cdot 0124$	1.4612	1.38720
	2864	1.9320	-	$1 \cdot 38547$	8361	0	1.9525	1.4682	1.38577
	4022	1.9358	-	1-38556		1972	1.9702	-	$1 \cdot 38598$
	5399	1.9396	-	1.38577		4214	1.9885	1.4657	$1 \cdot 38623$
	6599	1.9428	1.4678	$1 \cdot 38590$		6437	$2 \cdot 0048$	-	1.38652
						10,138	$2 \cdot 0284$	$1 \cdot 4625$	1.38690
						16,709	$2 \cdot 0600$	1.4588	1.38762

Phenol in n-heptane + pyridine at 45°.

$10^{6} w_{\text {B }}{ }^{\prime}$	$10^{6} w_{\mathrm{A}}$	ε	v	$10^{6} w_{\text {B }}{ }^{\prime}$	$10^{6} w_{\text {A }}$	ε	v
0	0	1.8890	1.5103	1663	0	1.8918	1.5100
	3177	1.8940	-		1936	1.9035	-
	6102	1.8989	$1 \cdot 5070$		3683	1.9090	1.5078
	10,211	1.9059	$1 \cdot 5049$		5702	1.9149	1-5069
	13,190	1.9109	1.5034		8722	1.9226	-
696	0	1.8918	1.5100		12,471	1.9310	1.5029
	965	1.8946	-	5888	0	1.9136	1.5078
	1682	1.8965	1.5091		2154	1-9274	-
	3014	$1 \cdot 8996$	$1 \cdot 5085$		4019	1.9381	-
	4490	1.9029	1.5076		4693	1.9416	1.5053
	6621	1.9074	1.5066		8653	1.9604	1.5031
					13,502	1.9791	-
					18,598	1.9953	$1 \cdot 4975$

Values of functions for phenol

Temp.	$10^{6} w_{B}{ }^{\prime}$	$\mathrm{d} \boldsymbol{\varepsilon} / \mathrm{d} w_{\mathrm{A}}$	$\mathrm{d} v / \mathrm{d} w_{\mathbf{A}}$	$\mathrm{d} n / \mathrm{d} w_{\mathrm{A}}$	$\left({ }_{T} P_{\text {A }}{ }^{\infty}\right)_{\text {BS }}$	$\begin{gathered} E P_{\mathrm{A}} \\ \text { Calc. } 27 \end{gathered}$
Benzene						
25°	0	$2 \cdot 61 \pm 0.03$	-0.22 ± 0.01	0.06	$72 \cdot 1$	$27 \cdot 3$
	647	$4 \cdot 86$	-0.21 ± 0.01	$0 \cdot 04$	112.0	$28 \cdot 2$
	3565	8.99	-0.22 ± 0.01	0.05	183.5	$28 \cdot 2$
	3869	$9 \cdot 63$	-0.19 ± 0.01	0.06	$195 \cdot 4$	29.5
	8552	11.4	-0.24 ± 0.02	$0 \cdot 07$	$222 \cdot 3$	28.8
40°	0	$2 \cdot 50 \pm 0.01$	-0.23 ± 0.02		71.5	
	552	$3 \cdot 59$	-0.24 ± 0.01		91.2	
	2905	$6 \cdot 41$	-0.26 ± 0.02		$142 \cdot 2$	
	7611	$9 \cdot 13$	-0.25 ± 0.01		$192 \cdot 2$	

Carbon tetrachloride

25°	0	4.55 ± 0.01	0.36 ± 0.03	$0 \cdot 15$	72.5	$29 \cdot 7$
	327	$8 \cdot 69{ }^{-}$	0.27 ± 0.03		112.2	
	1202	15.33	0.29 ± 0.02		$177 \cdot 2$	
	2307	$17 \cdot 99$	0.31 ± 0.01		203.5	
	4565	$20 \cdot 73$	0.27 ± 0.02	$0 \cdot 17$	226.9	$29 \cdot 1$
45°	0	4.05 ± 0.03	0.31 ± 0.01		$67 \cdot 7$	
	285	$5 \cdot 89$	0.32 ± 0.02		$87 \cdot 1$	
	664	$7 \cdot 79$	0.32 ± 0.02		$106 \cdot 7$	
	1351	$10 \cdot 33$	$0 \cdot 32 \pm 0.02$		132.9	

Table 2-continued

n -Heptane						
25°	0 1	1.795 ± 0.005	$-0.496 \pm 0.002 \quad 0.10$		$70 \cdot 1$	28.7
	1197	$5 \cdot 94$	$-0.50 \pm 0.01 \quad 0.10$		182.0	28.9
	2144 6	6.96	$-0.55 \pm 0.01 \quad 0.13$		$208 \cdot 1$	29.9
	4713 8	$8 \cdot 57$	$-0.57 \pm 0.01 \quad 0.11$		$249 \cdot 7$	$27 \cdot 7$
	8361 9	9.38	$-0.56 \pm 0.01 \quad 0.11$		269.5	$28 \cdot 3$
45°	0 1	1.64 ± 0.02	-0.53 ± 0.01		$67 \cdot 3$	
	696 3	$3 \cdot 12$	-0.51 ± 0.02		109.4	
	1663 4	$4 \cdot 46$	-0.54 ± 0.02		$146 \cdot 2$	
	5888 6	6.82	-0.55 ± 0.01		$210 \cdot 7$	
V Values of functions for pyridine						
Temp.	$\mathrm{d} \varepsilon / \mathrm{d} w_{\mathrm{B}}$		$\mathrm{d} v / \mathrm{d} w_{B}$	$\mathrm{d} n / \mathrm{d} w_{B}$	$\left({ }_{T} P_{B C O}\right)_{S}$	$\begin{gathered} E_{\mathrm{B}} P_{\mathrm{B}} \\ \text { Calc.:24•5} \end{gathered}$
Benzene						
25°	6.68 ± 0.05		$-0 \cdot 14 \pm 0.02$	0	123.0	$25 \cdot 3$
40°	$6 \cdot 16 \pm 0.05$		-0.14 ± 0.02	-	118.5	25
Carbon tetrachloride						
25°	13.45 ± 0.02		$0 \cdot 40 \pm 0.02$	0-12	136.4	$25 \cdot 4$
45°	$12 \cdot 0 \pm 0 \cdot 1$		$0 \cdot 30 \pm 0 \cdot 02$	-	126.2	-
n -Heptane						
25°	$4 \cdot 62 \pm 0 \cdot 01$		-0.42 ± 0.02	$0 \cdot 08$	$124 \cdot 7$	$24 \cdot 7$
45°	$4 \cdot 18 \pm 0 \cdot 02$		-0.42 ± 0.01	-	118.8	-

Discussion

The variation of the apparent total polarisation of phenol $\left(P_{\mathrm{A} \infty}\right)$ with mole fractions of pyridine $\left(f_{\mathrm{B}}{ }^{\prime}\right)$ in the solvent mixture at 25° is shown in the Figure.

Graph of apparent total polarisation of phenol at $25^{\circ}\left(P_{\Delta \infty}\right)$ in c.c. (as ordinate) against mole fraction of pyridine $\left(f_{\mathrm{B}}{ }^{\prime}\right)$ (as abscissa).
Solvents: $\times=$ benzene,
$O=$ carbon tetrachloride,
$\triangle=$ n-heptane.

From this it appears that the complex is more stable in n-heptane than in either benzene or carbon tetrachloride and this is borne out by the equilibrium constants (see Table 3).
It is clear also that equilibrium-constant values from dielectric-constant observations agree well with those obtained by infrared measurements on carbon tetrachloride solutions and by ultraviolet measurements on n-heptane solutions. Furthermore, although the error limits are greater in the values from dielectric measurements than in the best of the spectroscopic ones, we confirm the view of Few and Smith that the dielectric method is very useful. Curve fitting (see Experimental section) by computer gives a great increase in consistency.

There is a definite solvent effect which is especially marked in benzene solutions. This is probably due to complexing of one or more components with the solvent; even if the equilibrium constant for this were much smaller than that for the A-B reaction, the relatively great solvent concentration might make it important. Interaction between phenol and

Table 3.
Equilibrium results for phenol and pyridine.

benzene or halogenocarbons has already been reported from infrared studies ${ }^{18,19}$ as has been interaction between pyridine and carbon tetrachloride from dielectric studies. ${ }^{20}$ The small variations of electric dipole moment in the several solvents (see Table 4) are consistent with these interactions and suggest further that there is no specific interaction between pyridine and benzene.

Table 4.
Measured dipole moments (D).

Solvent	Temp.	Phenol	Pyridine	Complex	$\Delta \mu$
Benzene	25°	1.47 ± 0.02	$2 \cdot 20 \pm 0.02$	4.06 ± 0.05	0.6
	40	1.51 ± 0.02	2.20 ± 0.02	$4 \cdot 20 \pm 0.05$	0.7
Carbon	25	1.47 ± 0.01	$2 \cdot 34 \pm 0.01$	$4 \cdot 15 \pm 0.05$	0.6
tetrachloride	45	1.45 ± 0.01	$2 \cdot 30 \pm 0.02$	4.11 ± 0.05	0.6
n-Heptane	25	1.44 ± 0.01	$2 \cdot 21 \pm 0.01$	4.30 ± 0.03	0.9
	45	1.44 ± 0.01	2.22 ± 0.01	4.25 ± 0.03	0.9

It is relatively easy to show that the true equilibrium constant, K_{AB}, is related to the apparent one, $K_{A B}^{\prime}$, reported in Table 3, by the expression

$$
K_{\mathrm{AB}}=K_{\mathrm{AB}}^{\prime}\left(1+s K_{\mathrm{AS}}\right)\left(1+s K_{\mathrm{BS}}\right)
$$

where K_{AS} and K_{BS} are the association constants for reactants with solvent (all evaluated in concentration units) and s is the concentration of the solvent. From the equilibrium constant for the phenol-benzene interaction ${ }^{21}$ which is 0.251 . mole ${ }^{-1}$ at 25° and the concentration of benzene ($11 \cdot 1$ moles.$^{-1}$), assuming that activity equals concentration and also that there is no pyridine-benzene interaction (see above), a value of $K_{\mathrm{AB}}=136 \mathrm{l}$. mole ${ }^{-1}$ is obtained. This is considerably greater than the value of 80 ± 5 at 25° found for $K^{\prime}{ }_{A B}$ in. n-heptane which we believe approximates to K_{AB}, the true value, because there is no evidence for specific interaction of either component with this solvent. The agreement is

[^2]about as good as can be expected and it certainly shows the importance of such specific solvent interactions. The values of $K_{A B}^{\prime}$ in carbon tetrachloride are nearer to those in benzene than to those in n-heptane so the arguments against regarding benzene as an inert solvent in hydrogen-bonding studies may on occasion apply also to carbon tetrachloride. Because values for K_{AS} and K_{BS} are lacking, no correction can yet be made to the apparent equilibrium constant in this solvent. Solvent effects on the infrared spectra of pure compounds in solution have been widely discussed. Several attempts have been made to correlate band shifts in solution with dielectric effects and with specific interactions with the solvent. ${ }^{18,22,23}$

Values of $-\Delta H$ calculated from the variation of $K_{A B}^{\prime}$ with temperature are given in Table 3. These are likely to be affected by solvent, so the value of 6 kcal . mole ${ }^{-1}$ found from both spectroscopic and dielectric measurements on n-heptane solutions has most significance.

From the electric dipole moment found for the complex (see Table 4) the excess moment $\Delta \mu$, arising from the electron and nuclear perturbations caused by hydrogen bonding, can be obtained if the moment of the unperturbed system can be calculated. For this to be done, however, the relative orientations of the moments of phenol and of pyridine must be known, i.e., the structure must be known.

Structure (I) is the more probable but, because of the complexing found between phenol and benzene ${ }^{2}$ and because of the structure found for the bromine-benzene compound, ${ }^{24}$ the possibility of a structure such as (II) cannot be ignored. Assuming the moment of phenol to act towards the oxygen lone pairs at an angle of $66 \cdot 25^{\circ}$ with the $\mathrm{Ph}-\mathrm{O}$ direction and at $\mathbf{1 3 8 \cdot 2 5 ^ { \circ }}$ with the $\mathrm{O}-\mathrm{H}$ bond, ${ }^{25}$ a value of 3.44 D is calculated for the moment of (I) and of 2.65 D for (II). The excess moments calculated for structure (I) are given in Table 4; they average about 0.7 D , but the value of 0.9 D in n -heptane is probably the most significant. The excess moment for structure (II) would be at least 3 D (the pyridine molecule could rotate about the OH axis), which is so improbably large that this structure is rejected. The excess moment calculated for structure (I) is comparable with those obtained by Hulett, Pegg, and Sutton ${ }^{6}$ for complexes between trimethylamine and various phenols, by a different method but again assuming a structure of type (I).

The authors thank the Salters' Institute for the award of a Scholarship to R. J. B.

[^3]
[^0]: 1 P. Job, Ann. Chim. (France), 1928, 9, 113.
 ${ }^{2}$ G. C. Pimental and A. L. McClellan, "The Hydrogen Bond," Freeman, San Francisco, 1960.
 3 A. V. Few and J. W. Smith, J., 1949, 2781.
 4 D. Ll. Hammick, A. Norris, and L. E. Sutton, J., 1938, 1755.
 ${ }^{5}$ D. Cleverdon, G. B. Collins, and J. W. Smith, J., 1956, 4499.
 ${ }^{6}$ J. R. Hulett, J. A. Pegg, and L. E. Sutton, J., 1955, 3901.

[^1]: 7 I. F. Halverstadt and W. D. Kumler, J. Amer. Chem. Soc., 1942, 64, 2988.
 8 J. H. Cadwell, Ferranti Mercury Computer Library Service, Autocode Programme 1000, Issue 1, 1959.

 9 A. Chrétien and P. Laurent, Compt. vend., 1932, 195, 792.
 10 L. Hartshorn, J. V. L. Parry, and L. Essen, Proc. Phys. Soc., 1955, 68B, 422.
 11 J. Timmermans, "Physico Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.

 12 A. A. Maryott and E. R. Smith, "Tables of Dielectric Constants of Pure Liquids," N.B.S. Circular 514, 1951.

[^2]: 13 N. Fuson, P. Pineau, and M.-L. Josien, J. Chim. phys., 1958, 55, 454.
 14 A. Halleux, Bull. Soc. chim. belges, 1959, 68, 381.
 1_{5}^{15} H. Dunken and H. Fritsche, Z. Chem., 1962, 2, 345.
 16 M. Tsuboi, J. Chem. Soc. Japan, 1951, '72, 146.
 17 A. K. Chandra and S. Banerjee, J. Phys. Chem., 1962, 66, 952.
 18 A. Allerhand and P. von R. Schleyer, J. Amer. Chem. Soc., 1963, 85, 371.
 19 R. West, D. L. Powell, L. S. Whatley, M. K. T. Lee, and P. von R. Schleyer, J. Amer. Chem. Soc., 1962, 84, 3221.

 20 A. N. Sharpe and S. Walker, $J ., 1961,2974 ; 1962,157$.
 21 R . West, personal communication, 14th October, 1963.

[^3]: ${ }^{22}$ R. L. Williams, Ann. Reports 1961, 58, 34.
 23 A. D. Buckingham, Trans. Faraday Soc., 1960, 56, 753.
 24 O. Hassel and K. O. Strømme, Acta Chem. Scand., 1958, $12,1146$.
 ${ }_{25}$ J. W. Smith, "Electric Dipole Moments,"' Butterworths, London, 1955.

